Discrete Topology-Revealing Vector Fields on Simplicial Surfaces with Boundary

نویسندگان

  • Konstantin Poelke
  • Konrad Polthier
چکیده

We present a discrete Hodge-Morrey-Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces with boundary which is structurally consistent with the smooth theory. In particular, it preserves a deep linkage between metric properties of the spaces of harmonic Dirichlet and Neumann fields and the topology of the underlying geometry, which reveals itself as a discrete de Rham theorem and a certain angle between Dirichlet and Neumann fields. We illustrate and discuss this linkage on several geometries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary-aware hodge decompositions for piecewise constant vector fields

We provide a theoretical framework for discrete Hodge-type decomposition theorems of piecewise constant vector fields on simplicial surfaces with boundary that is structurally consistent with decomposition results for differential forms on smooth manifolds with boundary. In particular, we obtain a discrete Hodge-Morrey-Friedrichs decomposition with subspaces of discrete harmonic Neumann fieldsH...

متن کامل

Difference and Integral Calculus on Weighted Networks

The discrete vector calculus theory is a very fruitful area of work in many mathematical branches not only for its intrinsic interest but also for its applications, [1, 2, 3, 4]. One can construct a discrete vector calculus by considering simplicial complexes that approximates locally a smooth manifold and then use the Whitney application to define inner products on the cochain spaces, which gi...

متن کامل

Anisotropic Filtering of Non-Linear Surface Features

A new method for noise removal of arbitrary surfaces meshes is presented which focuses on the preservation and sharpening of non-linear geometric features such as curved surface regions and feature lines. Our method uses a prescribed mean curvature flow (PMC) for simplicial surfaces which is based on three new contributions: 1. the definition and efficient calculation of a discrete shape operat...

متن کامل

Yet Another Application of the Theory of ODE in the Theory of Vector Fields

In this paper we are supposed to define the θ−vector field on the n−surface S and then investigate about the existence and uniqueness of its integral curves by the Theory of Ordinary Differential Equations. Then thesubject is followed through some examples.

متن کامل

Schwinger-Dyson equation in three-dimensional simplicial quantum gravity

We study the simplicial quantum gravity in three dimensions. Motivated by the Boulatov’s model which generates a sum over simplicial complexes weighted with the Turaev-Viro invariant, we introduce boundary operators in the simplicial gravity associated to compact orientable surfaces. An amplitude of the boundary operator is given by a sum over triangulations in the interior of the boundary surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017